Neural Codes for Image Retrieval
نویسندگان
چکیده
This seminar report focuses on using convolutional neural networks for image retrieval. Firstly, we give a thorough discussion of several state-of-the-art techniques in image retrieval by considering the associated subproblems: image description, descriptor compression, nearest-neighbor search and query expansion. We discuss both the aggregation of local descriptors using clustering and metric learning techniques as well as global descriptors. Subsequently, we briefly introduce the basic concepts of deep convolutional neural networks, focusing on the architecture proposed by Krizhevsky et al. [KSH12]. We discuss different types of layers commonly used in recent architectures, for example convolutional layers, non-linearity and rectification layers, pooling layers as well as local contrast normalization layers. Finally, we shortly review supervised training techniques based on stochastic gradient descent and regularization techniques such as dropout and weight decay. Finally, following Babenko et al. [BSCL14], we discuss the use of feature activations in intermediate layers as image representation for image retrieval. After presenting experiments and comparing convolutional neural networks for image retrieval with other state-of-the-art techniques, we conclude by motivating the combined use of deep architectures and hand-crafted image representations for accurate and efficient image retrieval.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملUsing Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملNeural Codes for Image Retrieval
It has been shown that the activations invoked by an image within the top layers of a large convolutional neural network provide a high-level descriptor of the visual content of the image. In this paper, we investigate the use of such descriptors (neural codes) within the image retrieval application. In the experiments with several standard retrieval benchmarks, we establish that neural codes p...
متن کاملبررسی تأثیر نمایهسازی مفهوم-محور تصاویر بر بازیابی آنها با استفاده از موتور جستجوی گوگل
Purpose: The purpose of the present study is to investigate the Impact of Concept-based Image Indexing on Image Retrieval via Google. Due to the importance of images, this article focuses on the features taken into account by Google in retrieving the images. Methodology: The present study is a type of applied research, and the research method used in it comes from quasi-experimental and techno...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملReference ID A Binary Neural Shape Matcher using Johnson Counters and Chain Codes
In this paper, we introduce a neural network-based shape matching algorithm that uses Johnson Counter codes coupled with chain codes. Shape matching is a fundamental requirement in content-based image retrieval systems. Chain codes describe shapes using sequences of numbers. They are simple and flexible. We couple this power with the efficiency and flexibility of a binary associative-memory neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015